GOAL - Getting the students doing the thinking in Mathematics

Technique	Before	After	Reflection: Why and how?
Different perspectives Our thinking can change beyond one point of view.	Answer these questions: $4 \times 3,7 \times 3,9 \times 3 \ldots \text { etc }$	Think about how you would sort the following multiplication questions into three levels of difficulty: Harder, medium, easier: $1 \times 3,2 \times 3,3 \times 3 \text { etc up to } 12 \times 3$ - Deal out the $x 3$ cards and work in a group to place each card in the place that best describes its difficulty for you. Do you all agree? - Take turns to move a card to a different section if you think it has a different level of difficulty for you. Explain why you find it hard/easy. Did anyone find their opinion changed when listening to the ideas and reasoning of others?	WHY would you... have students share their different perspectives about these questions? To understand that there are different valid ways of approaching a calculation that affect the perception of difficulty. A student who calculates solutions by starting at 1×3 and working through the times table, may believe 9×3 to be more difficult than a student who sees 9×3 as 3 less than 30 . HOW does this develop powerful/expert learners? Students learn to consider and value others' viewpoints as a source for their learning.
Many entry points Thinking does not have to be linear. Have students work backwards by providing the outcome first.	1. Use unifix cubes to measure the length of your book. 2. How many unifix cubes do you need to balance a packet of pencils? 3. How many unifix cubes can be stacked in this box?	The answer is: 'I used 20 unifix cubes to measure it.' 1. What might I be measuring? Think of more possibilities. What else? What else? 2. Are all your examples the same type (eg length)? Can unifix cubes be used to measure those same objects in a different way? How? ...How else? What could an object be if it was measured using 20 unifix cubes?	WHY would you... have students work backwards from the solution; 'I used 20 unifix cubes to measure it.' To challenge students to identify and creatively explore different possibilities rather than follow a directed instruction. HOW does this develop powerful/expert learners? Students learn to be collaborative and inquisitive when many entry points are invited. They come to understand that most problems can be approached in many different ways.
Many pathways There are many possible ways to complete a task.	Calculate $39+43$.	Find at least two different ways to do the calculation $39+43$ Share your methods with another student. Together, try to identify at least three different methods. - Identify which method is the most efficient for this calculation. - Identify which methods are best for mental calculation? - Identify if some methods would be better than others for addition sums with larger values.	WHY would you... have students explore multiple methods for solving $39+43$? To challenge students to move beyond the method that comes most easily to them and require students to create new or varied approaches. This supports the need to analyse and evaluate the efficiency and accuracy of different methods, as students first need to have several different methods, before they can evaluate them. In this example, students could adjust and compensate, so the question becomes $40+42$, or start with 43 , add on 40 and subtract 1 etc... HOW does this develop powerful/expert learners? Students learn to be imaginative and logical as they explore many pathways to a problem. They are empowered by the resulting broader skill set.
Many solutions Open ended solution, but thinking stretched by constraints.	Work out: $\begin{aligned} & 4+6=\ldots \ldots \\ & 5+7=\ldots \ldots \ldots \\ & 21 / 2+41 / 2=\ldots \ldots . \\ & 711 / 4+23 / 4=\ldots \ldots . . \end{aligned}$	The solution is 12 . What could the question be? Aim to find at least 20 different solutions. Add the following constraints: 1. You can only use addition. 2. You can only use two values in your calculation. 3. Flipped calculations don't count as different solutions in this problem.	WHY would you... ask an open question and then add constraints? To change the emphasis from students as receivers of questions to students as creators of possibilities. But at the same time, using constraints to focus the student into creating solutions using thinking that is challenging them. In this example, the constraints, challenge students to use fractions and decimals. HOW does this develop powerful/expert learners? Students learn to be creative, flexible and innovative thinkers when they are challenged to explore many solutions.

